

Datenblatt

Temperaturregler für Dampf und Heißwasser (PN 25)

AVT / VGS - mit Außengewinde

Beschreibung

Der AVT / VGS ist ein selbsttätiger Proportionalregler, der zur Temperaturregelung vorwiegend in Dampf- und Heißwasseranlagen mit Temperaturen bis zu 200 °C eingesetzt wird. Der Regler schließt bei steigender Temperatur.

Der Temperaturregler besteht aus einem Regelventil VGS, einem Thermostat und einem Drehknopf zur Temperatureinstellung. Der thermostatische Stellantrieb besteht aus Balgelement, Kapillarrohr und Fühler.

Der Temperaturregler ist typgeprüft nach EN 14597 und kann in Kombination mit einem STW (Schutz-Temperaturwächter) Typ STM und einem STB (Schutz-Temperaturbegrenzer) Typ STL eingesetzt werden.

Eigenschaften:

- DN 15-25
- k_{vs} 1.0 -6.3 m3/h PN 25
- Einstellbereiche:
- −10 ... 40 °C/20 ... 70 °C/40 ... 90 °C/60 ... 110 °C und
- 10 ... 45 °C/35 ... 70 °C/60 ... 100 °C/85 ... 125 °C
- Temperatur:
 - Dampf / Kreislaufwasser / Wasser-Glykolgemische bis 30 % 2 ... 200 °C
- Anschlüsse:
 - · Außengewinde (Anschweißende, anschraubende und Flansch)
 - Einbau im Vor- und Rücklauf möglich.

Bestellung

Beispiel:

Temperaturregler für Dampf, DN 15; k_{VS} 1.6; PN 25; Einstellbereich 40 ... 90 °C; T_{max} 200 °C; Außengewinde

- 1× VGS DN 15 Ventil Bestell-Nr.: 065B0787
- AVT thermostatischer Stellantrieb, 40 ... 90 ℃ Bestell-Nr.: **065-0602**

Wahlweise:

- 1× Anschweißende Endstücke Bestell-Nr.: 003H6908

Das Ventil wird mit dem bereits montierten Adapter M34 \times M45 geliefert.

VGS Ventil 1)

Bild	DN (mm)	k _{vs} (m³/h)	Anschlussart		Bestell-Nr.
		1.0			065B0786
	15	1.6	Zylindr. Außengewinde nach ISO 228/1	G ¾ A	065B0787
		3.2			065B0788
	20	4.5		G 1 A	065B0789
	25	6.3		G 1¼ A	065B0790

¹⁾ Adapter M34 × M45 für den AVT Thermostat-Anschluss sind bereits an das Ventil montiert. (Info: Die Adapter M34 × M30 für den AMV(E) elektrischen Stellantrieb-Anschluss sind auch Teil des Lieferumfangs.)

AVT thermostatischer Stellantrieb

Bild	Für Ventile	Einstellbereich (°C)	Temperaturfühler mit Tauchhülse aus Messing, Länge, Anschlussart	Bestell-Nr.
		−10 +40	210 mm, R ¾ ¹⁾	065-0600
	DN 15-25	20 70		065-0601
		40 90		065-0602
		60 110		065-0603
		10 45		065-0604
		35 70		065-0605
		60 100		065-0606
		85 125		065-0607

¹⁾ kegeliges Außengewinde nach EN 10226-1

AI083286472265de-000502 | 1 © Danfoss | 2019.12

²⁾ ohne Tauchhülse

Temperaturregler für Dampf und Heißwasser AVT/VGS (PN 25)

Bestellung (Fortsetzung)

Zubehör für Ventile

Bild	Typenbezeichnung	DN	Anschlussart		Bestell-Nr.		
		15			003H6908		
	Anschweißende Endstücke	20	-		003H6909		
		25			003H6910		
	Anschraubende Endstücke (Außengewinde)	15	Kegeliges Außengewinde nach EN 10226-1	R 1/2	003H6902		
		20		R 3/4	003H6903		
	(Addengewinde)	25	Hacif Liv 10220 1	R 1	003H6904		
ППП			П	15			003H6915
1 ha. mad 1 l	Flansche	20	Flansche PN 25, nach EN	N 1092-2	003H6916		
	Transcrie	25	Transcriet IV 25, Hacit El	11072 2	003H6917		

Zubehör für Thermostate

Bild	Typenbezeichnung PN		Material	Bestell-Nr.
	Tauchhülse	25	Messing	065-4416 ¹⁾
	rauchhulse		Edelstahl, mat. Nr. 1.4435	065-4417 ¹⁾
	Adapter ²⁾		M34 × 1.5 mm / M45 × 1.5 mm	003H6927
		003H6855		
		003H6856		

¹⁾ Nicht für thermostatische Stellantriebe vom Typ AVT mit den Bestellnummern: **065-0604, 065-0605, 065-0606, 065-0607** ²⁾ Adapter für VGS-Kombinationen mit thermostatischen Stellantrieben AVT, STW Typ STM und STB Typ STL.

Ersatzteile

Bild	Typenbezeichnung	für Ventile DN	k _{vs}	Bestell-Nr.
a 6		15	3.2	
-((C (0)))	Ventilkörperverlängerung mit Stopfbuchsengehäuse	20	4.5	003H6877
Stopibucisengenause	25	6.3		
Stopfbuchseng	Charachara and Warra	für Fühler		Code No.
	Stoptbuchsengenause	AVT	R 3/4	065-4421

© Danfoss | 2019.12 2 | Al083286472265de-000502

Technische Daten

Ventile

Nennweite DN		DN	15			20	25
k _{vs} Wert		m³/h	1.0	1.6	3.2	4.5	6.3
Hub		mm		3		5	
Stellverhältnis			>1:50				
Ventilkennlinie			linear				
Kavitationswert z			≥ 0.6 ≥ 0				
Leckrate nach IEC 534		% des k _{vs}			≤ 0.05		
Nenndruck		PN	25				
Max. Differenzdruck		bar	10				
Medium			Dampf / Kreislaufwasser / Wasser-Glykolgemische bis 30 %				
Medium pH-Wert			min. 7, max. 10				
Mediumstemperatur °C			2 200				
A	Venti	il	Außengewinde				
Anschlüsse	Anschlus	steile	Anschweißende, Anschraubende und Flansch				
Werkstoffe							
Ventilgehäuse			Rotguss CuSn5ZnPb (Rg5)				
Ventilsitz			Edelstahl, mat. Nr. 1.4571				
Ventilkegel			Edelstahl, mat. Nr. 1.4122				
Druckentlastungssystem			Metallbalg				

Thermostatischer Stellantrieb

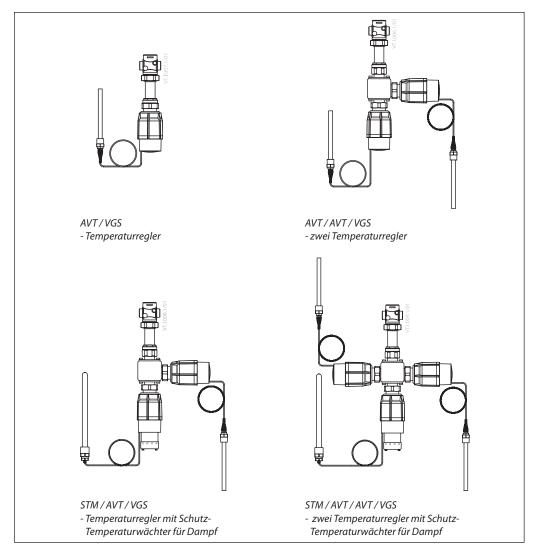
Einstellbereich X _s		°C	-10 40/20 70/40 90/60 110 10 45/35 70/60 100/85 125		
Zeitkonstante T nach EN	14597	Sek.	max. 50 (210 mm), max. 30 (255 mm)		
Übertragungsbeiwert Ks	;	mm/°K	0.3 (210 mm), 0.7 (255 mm)		
Max. zul. Temperatur am	Fühler		50 °C über max. Sollwert		
Zul. Umgebungstemperatur am Temperaturregler		°C	0 70		
Nenndruck Fühler		PN	25		
Nenndruck Tauchhülse					
Kapillarrohrlänge .		,	5 m (210 mm), 4 m (255 mm)		
Werkstoffe					
Temperaturfühler			Kupfer		
Ms Ausfüh		rung	Messing, vernickelt		
Tauchhülse 1)	Edelstahlausführung		Mat. Nr. 1.4435 (210 mm)		
Sollwertsteller			Polyamid, glasfaserverstärkt		
Skalenträger			Polyamid		

¹⁾ für Fühler 210 mm

Anwendungsbeispiele

Kombinationsmöglichkeiten

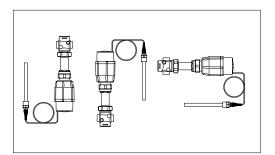
Beispiel:

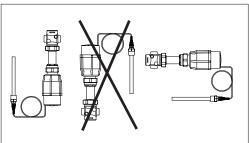

Temperaturregelung mit STW
Temperaturwächter für Dampf,
DN 15, k_{vs} 1.6, PN 25, Einstellbereich
40 ... 90 °C; T_{max} 200 °C;
Außengewinde

- 1× VGS DN 15 Ventil Bestell-Nr.: **065B0787**
- 1× AVT thermostatischer Stellantrieb, 40 ... 90 °C Bestell-Nr.: **065-0602**
- 1× STW Thermostat, 30 ... 110 °C Bestell-Nr.: **065-0608**
- 1× Kombinationsstück K2 Bestell-Nr.: 003H6855

Die Produkte werden separat geliefert.

Hinweis:


Für STM/VGS Daten und STLS Daten, siehe die entsprechenden Datenblätter.



Einbaulagen

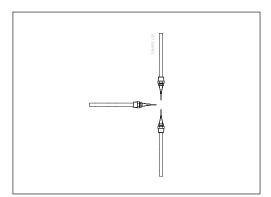
Temperaturregler

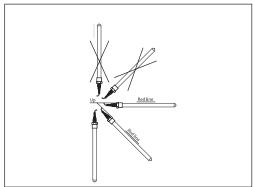
Die Einbaulage der Regler AVT / VGS ist bis zu einer Mediumstemperatur von 160°C beliebig. Bei höheren Temperaturen dürfen die Regler AVT / VGS nur in waagerechte Rohrleitungen mit nach unten hängendem Antrieb eingebaut werden.

4 | Al083286472265de-000502 © Danfoss | 2019.12

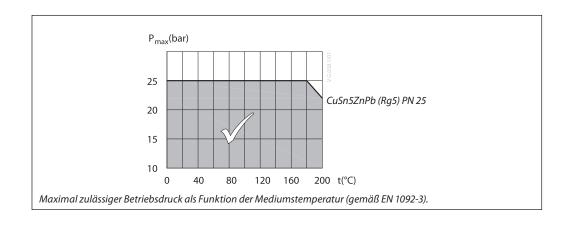
Einbaulagen (Fortführung)

Temperaturfühler

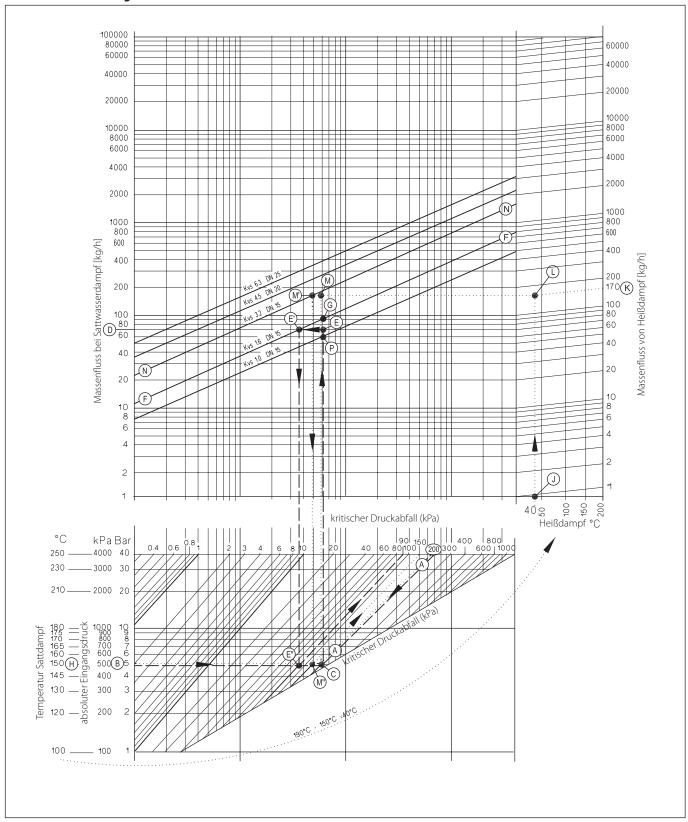

Der Einbauort ist so zu wählen, dass die Temperatur des Mediums direkt ohne Verzögerung erfasst wird. Eine Überhitzung des Temperaturfühlers ist zu vermeiden. Der Temperaturfühler muss in voller Länge in das Medium eintauchen.


Temperaturfühler 210 mm R¾":

- Einbaulage des Temperaturfühlers ist beliebig.



 Der Temperaturfühler muss so eingebaut werden, wie in der Abbildung gezeigt.



Druck-Temperatur-Diagramm

Ventildimensionierung

Bei der Auslegung von Dampfventilen rechnet man damit, dass der Druckabfall über das vollständig geöffnete Ventil ca. 40 % des Eingangsdrucks beträgt. Bei diesen Bedingungen ist die Dampfgeschwindigkeit nahe an der kritischen Geschwindigkeit (300 m/Sek), und eine

Drosselung findet über den gesamten Ventilhub statt.

Falls die Dampfgeschwindigkeit langsamer ist, wird im ersten Teil des Ventilhubes nur die Dampfgeschwindigkeit ansteigen, ohne dass der Volumenstrom reduziert wird.

6 | Al083286472265de-000502 © Danfoss | 2019.12

Ventildimensionierung (Fortsetzung)

1. Sattdampf

Daten:

Volumenstrom: 70 kg/h

Eingangsdruck abs.: 5 bar (500 kPa)

Anmerkung:

Folgen Sie für dieses Beispiel der gepunkteten Linie

Der absolute Eingangsdruck beträgt 500 kPa. Kritischer Druckabfall (40 % von 500 kPa) beträgt 200 kPa. Im unteren Diagramm bei dem kritischen Druckabfall 200 kPa die Diagonale A-A kennzeichnen.

Im unteren Diagramm links, den Eingangsdruck 500 kPa suchen (Punkt B) und durch B eine Waagrechte ziehen, diese schneidet die Diagonale A-A im Punkt C.

Von dem Punkt C aus eine senkrechte Linie nach oben ziehen bis die Waagerechte durch Punkt D (Massenstrom 70 kg/h) im Punkt E geschnitten wird.

Die nächste diagonale k_{VS} -Linie darüber ist die Linie F-F mit einem k_{VS} von 1.6 . Wenn die ideale Ventilgröße nicht erhältlich ist, sollte die nächst größere Einheit gewählt werden, um den ordnungsgemäßen Durchfluss zu gewährleisten.

Druckabfall über das Ventil wird bei der 70 kg/h Linie mit F-F (Punkt E') geschnitten und zieht eine senkrechte Linie nach unten bis die waagrechte Linie für den absoluten Eingangsdruck 500 kPa (Punkt E") bei einer Druckabfalldiagonalen von 90 kPa geschnitten wird. Dies sind nur 18 % des Druckabfalls über dem Ventil; dies ist für das Regelverhalten nicht ganz optimal, bis das

Ventil teilweise geschlossen ist. Wie bei allen Dampfventilen ist dieser Kompromiss notwendig, da das nächst kleinere Ventil nicht ausreichend ist, da hier nur ein Massenstrom von 60 kg/h erreicht wird (Punkt P).

Der maximale Durchfluss für den gleichen Eingangsdruck lässt sich wie folgt ermitteln: Die Senkrechte (C-E) durch den Punkt E nach oben bis zum Schnittpunkt mit der Diagonalen k_{vs} 1.6 F-F (Punkt G) verlängern und den Wert an der linken Skala ablesen (90 kg).

2. Überhitzter Dampf

Daten:

Volumenstrom: 170 kg/h

Eingangsdruck abs.: 5 bar (500 kPa)

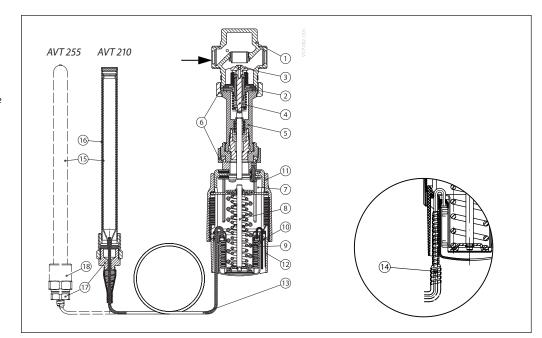
Dampftemperatur: 190 °C

Anmerkung:

Folgen Sie für dieses Beispiel der gepunkteten Linie Die Vorgehensweise für überhitzten Dampf ist nahezu identisch wie bei Sattdampf, man benutzt lediglich eine andere Durchflussskala, die die Lesungen entsprechend dem Erhitzungsgrad leicht erhöht.

Wie zuvor befindet sich die diagonale kritische Druckabfall-Linie A-A bei 40 % von 500 kPa (200 kPa). Die horizontale Linie für den Eingangsdruck durch Punkt B verlängert sich nun nach links, um die entsprechende Sattdampftemperatur bei Punkt H (150 °C) abzulesen. Die Differenz zwischen der Sattdampftemperatur und der Temperatur des überhitzten Dampfes beträgt: 190 °C – 150 °C = 40 °C (siehe Punkt J).

Der Heißdampfvorlauf 170 kg/h befindet sich auf der Skala oben rechts (Punkt K). Von hier folgt man der diagonalen Linie nach unten bis man die vertikale Linie der Dampftemperatursteigerung (40 °C, Punkt J) am Punkt L schneidet.


Wie zuvor schneidet die horizontale Linie durch den Punkt B die Linie A-A am Punkt C. Der Punkt wo die vertikale Linie von Punkt C die horizontale Linie von Punkt L schneidet ist der Betriebspunkt (Punkt m). Die horizontale Linie, L-M, ist die korrigierte Durchflusslinie. Die nächste diagonale Linie darüber ist die Linie N-N mit einem k_{vs} von 3.2 . Vom Punkt M' (Kreuzung L-M und Linie N-N) eine senkrechte Linie nach unten ziehen. Sie kreuzt die Linie 500 kPa abs. Eingangsdruck (Punkt M") bei einer Druckabfaldiagonalen von

Dies ist ein ungefährer Druckabfall über dem Ventil von 30 % (optimal sind ca. 40 %) vom Eingangsdruck, das ergibt ein gutes Regelverhalten.

Danfoss

Bauform

- 1. Ventil VGS
- 2. Innengarnitur
- 3. Ventilkegel (druckentlastet)
- 4. Ventilstange
- 5. Verlängerung Ventilgehäuse
- 6. Überwurfmutter
- **7.** Thermostatischer Stellantrieb AVT
- 8. Antriebsstange
- 9. Metallbalg
- 10. Sollwertfeder
- **11.** Handgriff für die Temperatureinstellung, mit Plombierbohrung
- 12. Skalenträger
- 13. Verbindungsrohr
- 14. Flexibles Schutzrohr (nur bei AVT 255 mm)
- 15. Temperaturfühler
- **16.** Tauchhülse
- 17. Stopfbuchse
- **18.** Stopfbuchsengehäuse

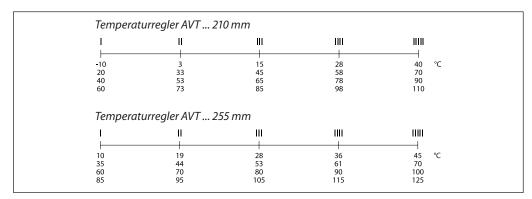
Funktionsprinzip

Die Mediumstemperatur erzeugt im Temperaturfühler einen dem Istwert entsprechenden Druck. Dieser Druck wird über das Verbindungsrohr auf den Metallbalg übertragen. Die Balgfläche bewegt die Thermostatstange und öffnet oder schließt das Ventil. Diese Stellkraft wirkt über die Antriebsstange und über die Kegelstange auf den Ventilkegel. Bei Temperaturerhöhung am Temperaturfühler schließt, bei Temperaturreduzierung am Temperaturfühler öffnet das Ventil.

Der Handgriff für die Temperatureinstellung kann plombiert werden.

Einstellungen

Temperatureinstellung

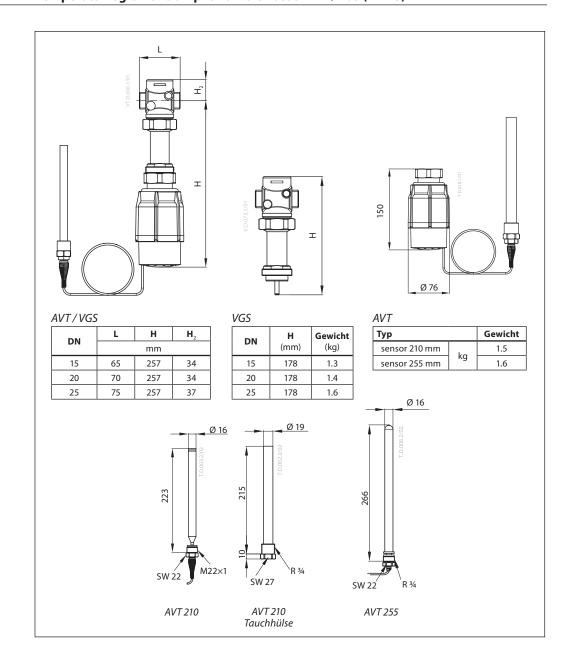

Die Sollwerttemperatur kann mit Hilfe des Handgriffs für die Temperatureinstellung verändert werden. Die Einstellung kann über die Feder für die Einstellung des Drucks und/oder der Druckanzeigen erfolgen.

Einstelldiagramm

Temperatureinstellung

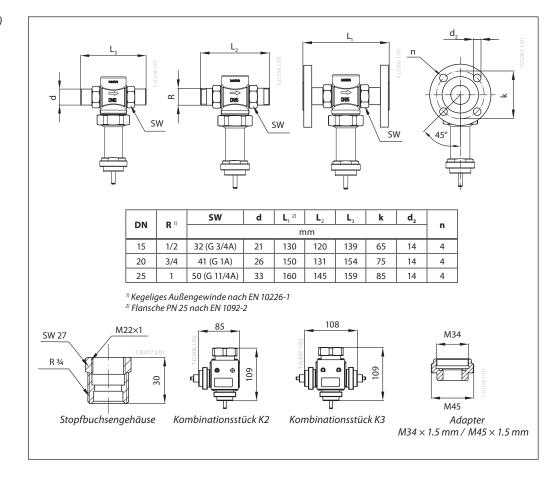
er Bezug zwischen den Skalenmarkierungen 1-5 und der Schließtemperatur.

Hinweis: Die angegebenen Werte sind nur Richtwerte.


Hinweis:

STM Schutz-Temperaturwächter (Stellantrieb):

 ${\it Die Temperaturs kala}\ is t\ bereits\ auf\ dem\ Produkt\ vorhanden.$



Nennweiten

Abmessungen (Fortsetzung)

© Danfoss | 2019.12 Al083286472265de-000502 | 11

Danfoss GmbH, Deutschland: danfoss.de • +49 69 80885 400 • E-Mail: CS@danfoss.de **Danfoss Ges.m.b.H., Österreich:** danfoss.at • +43 720 548 000 • E-Mail: CS@danfoss.at **Danfoss AG, Schweiz:** danfoss.ch • +41 61 510 00 19 • E-Mail: CS@danfoss.ch

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss Mitarbeitern ableiten, es sei denn, dass diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen des Angemessenen und Zumutbaren Änderungen an ihren Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und alle Danfoss Logos sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.

Datenblatt